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Abstract: A new architecture, namely, Multiplier-and-
accumulator (MAC) based Radix-4 Booth Multiplication 
Algorithm for high-speed arithmetic logics have been 
proposed and implemented on Xilinx FPGA device. By 
combining multiplication with accumulation and devising a 
hybrid type adder the performance was improved. The 
modified booth encoder will reduce the number of partial 
products generated by a factor of 2. Fast multipliers are 
essential parts of digital signal processing systems. The speed 
of multiply operation is of great importance in digital signal 
processing as well as in the general purpose processors. The 
number to be added is the multiplicand, the number of times 
that it is added is the multiplier, and the result is the product. 
Each step of addition generates a partial product.  
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I. INTRODUCTION 
With the recent rapid advances in multimedia and 
communication systems, real-time signal processing like 
audio signal processing, video/image processing, or large-
Capacity data processing are increasingly being demanded. 
The multiplier and multiplier-and-accumulator (MAC) [1] 
are the essential elements of the digital signal processing 
such as filtering, convolution, and inner products. Most 
digital signal processing methods use nonlinear functions 
such as discrete cosine transform (DCT) [2] or discrete 
wavelet transform (DWT) [3]. Because they are basically 
accomplished by repetitive application of multiplication 
and addition, the speed of the multiplication and addition 
arithmetic’s determines the execution speed and 
performance of the entire calculation. 
The article concentrates starting from the basic multiplier 
fundamentals, the general multiplication types and survey 
on various types of multipliers. Fast arithmetic requires fast 
circuits. Fast circuits require small size, to minimize the 
delay effects of wires. Small size implies a single chip 
implementation, to minimize wire delays, and to make it 
possible to implement these fast circuits as part of a larger 
single chip system to minimize input/output delays.  
At this junction, we discuss about a Modified Booth 
Encoding Radix-4 [9, 10] 8-bit Multiplier. Booth 
multiplication allows for smaller, faster multiplication 
circuits through encoding the signed numbers to 2’s 
complement, which is also a standard technique used in 
chip design, and provides significant improvements by 
reducing the number of partial product to half over “long 
multiplication” techniques. This paper reveals and 
demonstrate an extendable system architecture for 8-bit 
Radix-4 Booth algorithm [4][5]. As part of that the main 
blocks of Booth Encoder i.e., Partial Product Generator and 
Hybrid adder are presented in this algorithm. 
 

 
II. BASIC BINARY MULTIPLIER 

Multiplier circuits are found in virtually every computer, 
cellular telephone, and digital audio/video equipment. In 
fact, essentially any digital device used to handle speech, 
stereo, image, graphics, and multimedia content contains 
one or more multiplier circuits. The multiplier circuits are 
usually integrated within microprocessor, media co-
processor, and digital signal processor chips. These 
multipliers are used to perform a wide range of functions 
such as address generation, Discrete Cosine 
Transformations (DCT), Fast Fourier Transforms (FFT), 
multiply-accumulate, etc. As such, multipliers play a 
critical role in processing audio, graphics, video, and 
multimedia data. 
A multiplying circuit is able to perform a multiplication of 
n-bits X n-bits at a high speed by increasing the speed of 
the forming process of the partial products so that the delay 
time may be inhibited from increasing for a large n, and 
which can inhibit the chip size becoming large. 
Multiplication is more complicated than addition, being 
implemented by shifting as well as addition. Because of the 
partial products involved in most multiplication algorithms, 
more time and more circuit area is required to compute, 
allocate, and sum the partial products to obtain the 
multiplication result. Fig.1 shows the flow chart for basic 
binary multiplier. 

 
Fig.1. Flow Chart for Basic Binary Multiplier 
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The methods all reduce to two basic steps-create a group of 
partial products, then add them up to produce the final 
product. Different ways of adding the partial products were 
mentioned, but little was said about how to generate the 
partial products to be summed. A recoding scheme 
introduced by Booth reduces the number of partial products 
by about a factor of two. 
  

III. ADDERS FOR MULTIPLICATION 
Fast carry propagate adders are important to high 
performance multiplier design in two ways. First, an 
efficient and fast adder is needed to make any "hard" 
multiples that are needed in partial product generation. 
Second, after the partial products have been summed in a 
redundant form, a carry propagate adder is needed to 
produce the final non redundant product. 
A. Ripple Adder 
It is possible to create a logical circuit using multiple full 
adders to add N-bit numbers. Each full adder inputs a Cin 
which is the Cout of the previous adder. This kind of adder 
is a ripple carry adder, since each carry bit "ripples" to the 
next full adder. Note that the first (and only the first) full 
adder may be replaced by a half adder in some cases. 
The layout of a ripple carry adder is simple, which allows 
for fast design time; however, the ripple carry adder is 
relatively slow, since each full adder must wait for the 
carry bit to be calculated from the previous full adder. The 
gate delay can easily be calculated by inspection of the full 
adder circuit. Each full adder requires three levels of logic. 
B. Carry Look-Ahead Adder (CLA) 
The concept behind the CLA is to get rid of the rippling 
carry present in a conventional adder design. The rippling 
of carry produces unnecessary delay in the circuit. Carry 
look-ahead logic uses the concepts of generating and 
propagating carries. Although in the context of a carry look 
ahead adder, it is most natural to think of generating and 
propagating in the context of binary addition, the concepts 
can be used more generally than this. In the descriptions 
below, the word digit can be replaced by bit when referring 
to binary addition. 
C. Carry Select Adder (CSA) 
The carry select adder generally consists of two ripple carry 
adders and a multiplexer. Adding two k-bit numbers with a 
carry select adder is done with two k/2 adders (therefore 
two ripple carry adders) in order to perform the calculation 
twice, one time with the assumption of the carry being zero 
and the other assuming one. After the two results are 
calculated, the correct sum, as well as the correct carry, is 
then selected with the multiplexer once the correct carry is 
known. The number of bits in each carry select block can 
be uniform, or variable.  
In the uniform case, the optimal delay occurs for a block 
size of square root of K. When variable, the block size 
should have a delay, from addition inputs A and B to the 
carry out, equal to that of the multiplexer chain leading into 
it, so that the carry out is calculated just in time. The delay 
is derived from uniform sizing, where the ideal number of 
full-adder elements per block is equal to the square root of 
the number of bits being added, since that will yield an 
equal number of MUX delays. 
D. Hybrid Adder 
Hybrid Adder [11, 12] is a combination of any two adders. 
It is used in high speed applications. The proposed hybrid 

adder consists of two carry look ahead adders and a 
multiplexer. Adding two n-bit numbers with a hybrid adder 
is done with two adders (therefore two carry look ahead 
adders) in order to perform the calculation twice, one time 
with the assumption of the carry being zero and the other 
assuming one. After the two results are calculated, the 
correct sum, as well as the correct carry, is then selected 
with the multiplexer once the correct carry is known. The 
propagation delay is less for hybrid adder and at the same 
time it occupies larger area compared to the other adders. 
 

IV. DESIGN APPROACH 
This section focus on the design approach for Radix-2 and 
Radix-4 Booth multipliers by considering the necessary 
specifications and made in the form of state diagrams and 
ASM charts for develop the relevant source code in VHDL. 
The presented Figures elaborate the logics required for 
necessary operations.   
A. Booth Multiplication Algorithm for Radix-2 
It will encode the multiplicand based on multiplier bits. In 
Radix -2 we will compare 2 bits at a time with overlapping 
technique. Grouping starts from the LSB, and the first 
block only uses one bit of the multiplier and assumes a zero 
for the second bit. 
Table 1: Radix-2 Booth Encoding Table 

Block Partial Product 
00 0 
01 1*Multiplicand 
10 -1*Multiplicand 
11 0 

 
The functional operation of booth encoder is tabulated in 
Table 1. There are two inputs for booth encoder one is 
multiplicand and the other is 2 bits from multiplier, based 
on these two inputs it will encode the multiplicand.  
State diagram 
The state diagram of the Radix-2 Booth multiplier is shown 
in Fig.2. Here we have four different types of states. For 
00, 11 states we can perform multiplication of multiplicand 
with zero. For 01 state, we can multiply multiplicand with 
one whereas for 10 state, we can multiply multiplicand  
with -1. 

 
Fig.2. State diagram for Radix-2 Multiplier 

ASM chart 
The Fig.3 shows the ASM chart for Radix-2 booth 
multiplier. It represents conventional procedure for various 
operations required with respect to state of machine. Here 
we generate the partial products by Radix-2 booth encoder. 
By using this technique we can reduce the partial products 
generation and the computation time delay is less than 
ordinary multiplication.    
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B. Booth Multiplication Algorithm for Radix-4 
One of the solutions of realizing high speed multipliers is to 
enhance parallelism which helps to decrease the number of 
subsequent calculation stages. The original version of the 
Booth algorithm (Radix-2) had two drawbacks. They are: 
(i) the number of add subtract operations and the number of 
shift operations become variable and become inconvenient 

in designing parallel multipliers. (ii) The algorithm 
becomes inefficient when there are isolated 1’s. These 
problems are overcome by using modified Radix-4 Booth 
multiplication algorithm. The design approach of Radix-4 
algorithm is described with the pictorial views of state 
diagram and ASM chart. 

 
Fig.3. ASM chart for Radix-2 Booth Multiplier 

 

 
Fig.5. ASM chart for Radix-4 Booth Multiplier 

 
Table 2: Radix-4 Booth Encoding Table 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Block Partial Product 
000 0 
001 1*multiplicand 
010 1*multiplicand 
011 2*multiplicand 
011 2*multiplicand 
100 -2*multiplicand 
101 -1*multiplicand 
110 -1*multiplicand 
111 0 
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This algorithm scans strings of three bits as follows: 
1) Extend the sign bit 1 position if necessary to ensure that 
n is even. 
2) Append a 0 to the right of the LSB of the multiplier. 
3) According to the value of each vector, each Partial 
Product will bhe 0, +y, -y, +2y or -2y. 
Radix-4 booth encoder performs the process of encoding 
the multiplicand based on multiplier bits. It will compare 3 
bits at a time with overlapping technique. Grouping starts 
from the LSB, and the first block only uses two bits of the 
multiplier and assumes a zero for the third bit. The 
functional operation of Radix-4 booth encoder is shown in 
the Table 2. 
The state diagram of the Radix-4 Booth multiplier is shown 
in Fig.4. It consists of eight different types of states and 
during these states we can obtain the outcomes, which are 
multiplication of multiplicand with 0,-1 and -2 
consecutively. The pictorial view of the state diagram 
presents various logics to perform the Radix-4 Booth 
multiplication in different states as per the adopting 
encoding technique. 
ASM chart 
The ASM chart for Radix-4 booth multiplier is as shown in 
Fig.5. This represents the conventional flow of operations 
that are required for Radix-4 booth multiplier in various 
states. Here we can generate the partial products by Radix-
4 booth encoder. By using this technique we can further 
reduce the partial products generation and the computation 
time delay, which is less than that of Radix-2 
multiplication. 
State diagram 

 
Fig.4. State diagram of Radix-4 Booth Multiplier 

 
V. SIMULATION RESULTS 

 

 
Fig.6. Simulation Results of Radix-2 Booth multiplier 

 
Fig.7. Simulation Results of Radix-4 Booth multiplier 

 
Fig.6.shows the simulation result of Radix-2 Booth 
multiplier in which they are two binary inputs, multiplicand 
and multiplier. If both binary numbers are positive then it 
will go directly to booth encoding. If any one of operands is 
negative it will take two’s complement and then it performs 
booth encoding.  Initial consider two-two bits from 
multiplier as one zero bit and other bit as lowest bit of 
multiplicand. During the next cycle it takes two-two bits 
from multiplicand in overlap manner.  Perform the same 
until the process completed.  At last the addition of partial 
products is done by tree type hybrid adder. 
Fig.7.shows the simulation result of Radix-4 Booth 
multiplier in which they are two binary inputs as input, one 
is multiplicand and another one is multiplier. If both binary 
numbers are positive then it will perform booth encoding. If 
any one of operands is negative it will take two’s 
complement and then it will do booth encoding.  Consider 
three-three bits from multiplier, initially take one bit zero 
and other bits from lowest bits of multiplicand. For next 
operation consider three-three bits from multiplicand in 
overlap manner. At end of operation an addition of partial 
products can be carried out by tree type hybrid adder. The 
required simulation has been carried out by using Model 
Simulator and the functional verification performed. 
 

VI. FPGA REALIZATION 
The designed system is targeted onto Xilinx xc2vpx70-7-
ff1704 FPGA device belonging to virtex2p family with a 
speed grade of –7. The logical routing can be observed 
from the obtained Place and route result from the FPGA 
Editor option in Xilinx synthesizer. It is observed that about 
40% area for the targeted FPGA is covered for the 
implementation of this System. The CLB’s are connected 
in cascade manner to obtain the functionality for the 
designed system.  
A. Synthesis Report 
The synthesis result for the proposed algorithm is 
presented: 
Macro Statistics# Registers: 49 
# Multiplexers  : 25 
# Tristates  : 74 
# Adders/Subtractors : 618 
# Multipliers  : 29 
# Comparators  : 128 
Design Statistics 
# IOs    : 26 
Cell Usage : 
# BELS   : 181 
Minimum period: 5.220ns (Maximum Frequency: 
191.571MHz) 
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From the result it is observed that logical counts of 181 
Basic Element Logic (BEL) is required for the realization 
of DST processor. The real time Maximum operating 
frequency obtained is 191.571 MHz and this operation 
frequency is considerably higher than the current sample 
frequency and makes it more suitable for real time current 
analysis. 
B.RTL Views 

 
Fig.8. RTL Schematic of Radix-2 Booth multiplier 

 

 
Fig.9. RTL Schematic of Radix-4 Booth multiplier 

 
C. Routing and Placement 

 
Fig.10. Routing of logical placement in targeted FPGA 

 

 
Fig.11. FPGA Placement of the targeted FPGA 

D. Implementation Observations 
The implementation of proposed Radix-4 Booth 
Multiplication algorithm is illustrated in various pictorial 
views obtained during the process of realization i.e., from 
Fig.8 to Fig.12. Fig.8 & Fig.9 shows the RTL views of 
existing and proposed algorithms. Routing of logical 
placement in targeted FPGA is shown in Fig.10 and Fig.11 
represent the placement of the targeted logic onto FPGA 
device.  
 

VII. PERFORMANCE OF MULTIPLIERS 
 

Table 3: Performance of Multipliers 

 
Radix-4 booth 
multiplier with 
hybrid adder 

Radix-2 booth 
multiplier with 
hybrid adder 

No. of slices 119 166 
No. of LUTs 213 300 
Path delay 29.198ns 37.881ns 

 
Table 3 is valid for 8 bit x 8 bit multiplier. The table 
distinguishes the performance of proposed Radix-4 Booth 
Multiplier with the existing Radix-2 Booth Multiplier. The 
main advantage of using Radix-4 is it has less propagation 
delay, i.e speed and at the same time it occupies lesser area 
than Radix-2. 
 

VIII. FUTURE SCOPE 
The algorithm has been implemented using hybrid adder to 
add the partial products in parallel for the final output. 
Hybrid adder is a combination of carry look ahead adder 
and carry select adder. It can be further extended by taking 
combination of any two adding techniques so that 
propagation delay is further reduced. For higher inputs 
Radix 2n multipliers will give better performance. 
 

IX. CONCLUSION 
It is to be concluded that this presentation projects the 
design approach for modified (Radix-4) Booth’s algorithm. 
Further, we have observed the simulation results of the 
booth multiplier and booth encoder for radix-2 and radix-4 
algorithms. The FPGA realization of the proposed Booth 
multiplier has been performed using relevant synthesizer. 
The design flow was discussed with the aid of necessary 
ASM charts and state diagrams. 
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