
FPGA Realization of Radix-4 Booth Multiplication
Algorithm for High Speed Arithmetic Logics

K. Babulu,G.Parasuram

Department of Electronics and Communication Engineering,
Jawaharlal Nehru Technological University, Kakinada (JNTUK), Kakinada, India

Abstract: A new architecture, namely, Multiplier-and-
accumulator (MAC) based Radix-4 Booth Multiplication
Algorithm for high-speed arithmetic logics have been
proposed and implemented on Xilinx FPGA device. By
combining multiplication with accumulation and devising a
hybrid type adder the performance was improved. The
modified booth encoder will reduce the number of partial
products generated by a factor of 2. Fast multipliers are
essential parts of digital signal processing systems. The speed
of multiply operation is of great importance in digital signal
processing as well as in the general purpose processors. The
number to be added is the multiplicand, the number of times
that it is added is the multiplier, and the result is the product.
Each step of addition generates a partial product.

Key Words: - VLSI, FPGA, Carry Select Adder (CSA), Carry
Look Ahead Adder (CLA), ASM

I. INTRODUCTION
With the recent rapid advances in multimedia and
communication systems, real-time signal processing like
audio signal processing, video/image processing, or large-
Capacity data processing are increasingly being demanded.
The multiplier and multiplier-and-accumulator (MAC) [1]
are the essential elements of the digital signal processing
such as filtering, convolution, and inner products. Most
digital signal processing methods use nonlinear functions
such as discrete cosine transform (DCT) [2] or discrete
wavelet transform (DWT) [3]. Because they are basically
accomplished by repetitive application of multiplication
and addition, the speed of the multiplication and addition
arithmetic’s determines the execution speed and
performance of the entire calculation.
The article concentrates starting from the basic multiplier
fundamentals, the general multiplication types and survey
on various types of multipliers. Fast arithmetic requires fast
circuits. Fast circuits require small size, to minimize the
delay effects of wires. Small size implies a single chip
implementation, to minimize wire delays, and to make it
possible to implement these fast circuits as part of a larger
single chip system to minimize input/output delays.
At this junction, we discuss about a Modified Booth
Encoding Radix-4 [9, 10] 8-bit Multiplier. Booth
multiplication allows for smaller, faster multiplication
circuits through encoding the signed numbers to 2’s
complement, which is also a standard technique used in
chip design, and provides significant improvements by
reducing the number of partial product to half over “long
multiplication” techniques. This paper reveals and
demonstrate an extendable system architecture for 8-bit
Radix-4 Booth algorithm [4][5]. As part of that the main
blocks of Booth Encoder i.e., Partial Product Generator and
Hybrid adder are presented in this algorithm.

II. BASIC BINARY MULTIPLIER

Multiplier circuits are found in virtually every computer,
cellular telephone, and digital audio/video equipment. In
fact, essentially any digital device used to handle speech,
stereo, image, graphics, and multimedia content contains
one or more multiplier circuits. The multiplier circuits are
usually integrated within microprocessor, media co-
processor, and digital signal processor chips. These
multipliers are used to perform a wide range of functions
such as address generation, Discrete Cosine
Transformations (DCT), Fast Fourier Transforms (FFT),
multiply-accumulate, etc. As such, multipliers play a
critical role in processing audio, graphics, video, and
multimedia data.
A multiplying circuit is able to perform a multiplication of
n-bits X n-bits at a high speed by increasing the speed of
the forming process of the partial products so that the delay
time may be inhibited from increasing for a large n, and
which can inhibit the chip size becoming large.
Multiplication is more complicated than addition, being
implemented by shifting as well as addition. Because of the
partial products involved in most multiplication algorithms,
more time and more circuit area is required to compute,
allocate, and sum the partial products to obtain the
multiplication result. Fig.1 shows the flow chart for basic
binary multiplier.

Fig.1. Flow Chart for Basic Binary Multiplier

K. Babulu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2102-2107

2102

The methods all reduce to two basic steps-create a group of
partial products, then add them up to produce the final
product. Different ways of adding the partial products were
mentioned, but little was said about how to generate the
partial products to be summed. A recoding scheme
introduced by Booth reduces the number of partial products
by about a factor of two.

III. ADDERS FOR MULTIPLICATION
Fast carry propagate adders are important to high
performance multiplier design in two ways. First, an
efficient and fast adder is needed to make any "hard"
multiples that are needed in partial product generation.
Second, after the partial products have been summed in a
redundant form, a carry propagate adder is needed to
produce the final non redundant product.
A. Ripple Adder
It is possible to create a logical circuit using multiple full
adders to add N-bit numbers. Each full adder inputs a Cin
which is the Cout of the previous adder. This kind of adder
is a ripple carry adder, since each carry bit "ripples" to the
next full adder. Note that the first (and only the first) full
adder may be replaced by a half adder in some cases.
The layout of a ripple carry adder is simple, which allows
for fast design time; however, the ripple carry adder is
relatively slow, since each full adder must wait for the
carry bit to be calculated from the previous full adder. The
gate delay can easily be calculated by inspection of the full
adder circuit. Each full adder requires three levels of logic.
B. Carry Look-Ahead Adder (CLA)
The concept behind the CLA is to get rid of the rippling
carry present in a conventional adder design. The rippling
of carry produces unnecessary delay in the circuit. Carry
look-ahead logic uses the concepts of generating and
propagating carries. Although in the context of a carry look
ahead adder, it is most natural to think of generating and
propagating in the context of binary addition, the concepts
can be used more generally than this. In the descriptions
below, the word digit can be replaced by bit when referring
to binary addition.
C. Carry Select Adder (CSA)
The carry select adder generally consists of two ripple carry
adders and a multiplexer. Adding two k-bit numbers with a
carry select adder is done with two k/2 adders (therefore
two ripple carry adders) in order to perform the calculation
twice, one time with the assumption of the carry being zero
and the other assuming one. After the two results are
calculated, the correct sum, as well as the correct carry, is
then selected with the multiplexer once the correct carry is
known. The number of bits in each carry select block can
be uniform, or variable.
In the uniform case, the optimal delay occurs for a block
size of square root of K. When variable, the block size
should have a delay, from addition inputs A and B to the
carry out, equal to that of the multiplexer chain leading into
it, so that the carry out is calculated just in time. The delay
is derived from uniform sizing, where the ideal number of
full-adder elements per block is equal to the square root of
the number of bits being added, since that will yield an
equal number of MUX delays.
D. Hybrid Adder
Hybrid Adder [11, 12] is a combination of any two adders.
It is used in high speed applications. The proposed hybrid

adder consists of two carry look ahead adders and a
multiplexer. Adding two n-bit numbers with a hybrid adder
is done with two adders (therefore two carry look ahead
adders) in order to perform the calculation twice, one time
with the assumption of the carry being zero and the other
assuming one. After the two results are calculated, the
correct sum, as well as the correct carry, is then selected
with the multiplexer once the correct carry is known. The
propagation delay is less for hybrid adder and at the same
time it occupies larger area compared to the other adders.

IV. DESIGN APPROACH
This section focus on the design approach for Radix-2 and
Radix-4 Booth multipliers by considering the necessary
specifications and made in the form of state diagrams and
ASM charts for develop the relevant source code in VHDL.
The presented Figures elaborate the logics required for
necessary operations.
A. Booth Multiplication Algorithm for Radix-2
It will encode the multiplicand based on multiplier bits. In
Radix -2 we will compare 2 bits at a time with overlapping
technique. Grouping starts from the LSB, and the first
block only uses one bit of the multiplier and assumes a zero
for the second bit.
Table 1: Radix-2 Booth Encoding Table

Block Partial Product
00 0
01 1*Multiplicand
10 -1*Multiplicand
11 0

The functional operation of booth encoder is tabulated in
Table 1. There are two inputs for booth encoder one is
multiplicand and the other is 2 bits from multiplier, based
on these two inputs it will encode the multiplicand.
State diagram
The state diagram of the Radix-2 Booth multiplier is shown
in Fig.2. Here we have four different types of states. For
00, 11 states we can perform multiplication of multiplicand
with zero. For 01 state, we can multiply multiplicand with
one whereas for 10 state, we can multiply multiplicand
with -1.

Fig.2. State diagram for Radix-2 Multiplier

ASM chart
The Fig.3 shows the ASM chart for Radix-2 booth
multiplier. It represents conventional procedure for various
operations required with respect to state of machine. Here
we generate the partial products by Radix-2 booth encoder.
By using this technique we can reduce the partial products
generation and the computation time delay is less than
ordinary multiplication.

K. Babulu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2102-2107

2103

B. Booth Multiplication Algorithm for Radix-4
One of the solutions of realizing high speed multipliers is to
enhance parallelism which helps to decrease the number of
subsequent calculation stages. The original version of the
Booth algorithm (Radix-2) had two drawbacks. They are:
(i) the number of add subtract operations and the number of
shift operations become variable and become inconvenient

in designing parallel multipliers. (ii) The algorithm
becomes inefficient when there are isolated 1’s. These
problems are overcome by using modified Radix-4 Booth
multiplication algorithm. The design approach of Radix-4
algorithm is described with the pictorial views of state
diagram and ASM chart.

Fig.3. ASM chart for Radix-2 Booth Multiplier

Fig.5. ASM chart for Radix-4 Booth Multiplier

Table 2: Radix-4 Booth Encoding Table

Block Partial Product
000 0
001 1*multiplicand
010 1*multiplicand
011 2*multiplicand
011 2*multiplicand
100 -2*multiplicand
101 -1*multiplicand
110 -1*multiplicand
111 0

K. Babulu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2102-2107

2104

This algorithm scans strings of three bits as follows:
1) Extend the sign bit 1 position if necessary to ensure that
n is even.
2) Append a 0 to the right of the LSB of the multiplier.
3) According to the value of each vector, each Partial
Product will bhe 0, +y, -y, +2y or -2y.
Radix-4 booth encoder performs the process of encoding
the multiplicand based on multiplier bits. It will compare 3
bits at a time with overlapping technique. Grouping starts
from the LSB, and the first block only uses two bits of the
multiplier and assumes a zero for the third bit. The
functional operation of Radix-4 booth encoder is shown in
the Table 2.
The state diagram of the Radix-4 Booth multiplier is shown
in Fig.4. It consists of eight different types of states and
during these states we can obtain the outcomes, which are
multiplication of multiplicand with 0,-1 and -2
consecutively. The pictorial view of the state diagram
presents various logics to perform the Radix-4 Booth
multiplication in different states as per the adopting
encoding technique.
ASM chart
The ASM chart for Radix-4 booth multiplier is as shown in
Fig.5. This represents the conventional flow of operations
that are required for Radix-4 booth multiplier in various
states. Here we can generate the partial products by Radix-
4 booth encoder. By using this technique we can further
reduce the partial products generation and the computation
time delay, which is less than that of Radix-2
multiplication.
State diagram

Fig.4. State diagram of Radix-4 Booth Multiplier

V. SIMULATION RESULTS

Fig.6. Simulation Results of Radix-2 Booth multiplier

Fig.7. Simulation Results of Radix-4 Booth multiplier

Fig.6.shows the simulation result of Radix-2 Booth
multiplier in which they are two binary inputs, multiplicand
and multiplier. If both binary numbers are positive then it
will go directly to booth encoding. If any one of operands is
negative it will take two’s complement and then it performs
booth encoding. Initial consider two-two bits from
multiplier as one zero bit and other bit as lowest bit of
multiplicand. During the next cycle it takes two-two bits
from multiplicand in overlap manner. Perform the same
until the process completed. At last the addition of partial
products is done by tree type hybrid adder.
Fig.7.shows the simulation result of Radix-4 Booth
multiplier in which they are two binary inputs as input, one
is multiplicand and another one is multiplier. If both binary
numbers are positive then it will perform booth encoding. If
any one of operands is negative it will take two’s
complement and then it will do booth encoding. Consider
three-three bits from multiplier, initially take one bit zero
and other bits from lowest bits of multiplicand. For next
operation consider three-three bits from multiplicand in
overlap manner. At end of operation an addition of partial
products can be carried out by tree type hybrid adder. The
required simulation has been carried out by using Model
Simulator and the functional verification performed.

VI. FPGA REALIZATION
The designed system is targeted onto Xilinx xc2vpx70-7-
ff1704 FPGA device belonging to virtex2p family with a
speed grade of –7. The logical routing can be observed
from the obtained Place and route result from the FPGA
Editor option in Xilinx synthesizer. It is observed that about
40% area for the targeted FPGA is covered for the
implementation of this System. The CLB’s are connected
in cascade manner to obtain the functionality for the
designed system.
A. Synthesis Report
The synthesis result for the proposed algorithm is
presented:
Macro Statistics# Registers: 49
Multiplexers : 25
Tristates : 74
Adders/Subtractors : 618
Multipliers : 29
Comparators : 128
Design Statistics
IOs : 26
Cell Usage :
BELS : 181
Minimum period: 5.220ns (Maximum Frequency:
191.571MHz)

K. Babulu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2102-2107

2105

From the result it is observed that logical counts of 181
Basic Element Logic (BEL) is required for the realization
of DST processor. The real time Maximum operating
frequency obtained is 191.571 MHz and this operation
frequency is considerably higher than the current sample
frequency and makes it more suitable for real time current
analysis.
B.RTL Views

Fig.8. RTL Schematic of Radix-2 Booth multiplier

Fig.9. RTL Schematic of Radix-4 Booth multiplier

C. Routing and Placement

Fig.10. Routing of logical placement in targeted FPGA

Fig.11. FPGA Placement of the targeted FPGA

D. Implementation Observations
The implementation of proposed Radix-4 Booth
Multiplication algorithm is illustrated in various pictorial
views obtained during the process of realization i.e., from
Fig.8 to Fig.12. Fig.8 & Fig.9 shows the RTL views of
existing and proposed algorithms. Routing of logical
placement in targeted FPGA is shown in Fig.10 and Fig.11
represent the placement of the targeted logic onto FPGA
device.

VII. PERFORMANCE OF MULTIPLIERS

Table 3: Performance of Multipliers

Radix-4 booth
multiplier with
hybrid adder

Radix-2 booth
multiplier with
hybrid adder

No. of slices 119 166
No. of LUTs 213 300
Path delay 29.198ns 37.881ns

Table 3 is valid for 8 bit x 8 bit multiplier. The table
distinguishes the performance of proposed Radix-4 Booth
Multiplier with the existing Radix-2 Booth Multiplier. The
main advantage of using Radix-4 is it has less propagation
delay, i.e speed and at the same time it occupies lesser area
than Radix-2.

VIII. FUTURE SCOPE
The algorithm has been implemented using hybrid adder to
add the partial products in parallel for the final output.
Hybrid adder is a combination of carry look ahead adder
and carry select adder. It can be further extended by taking
combination of any two adding techniques so that
propagation delay is further reduced. For higher inputs
Radix 2n multipliers will give better performance.

IX. CONCLUSION
It is to be concluded that this presentation projects the
design approach for modified (Radix-4) Booth’s algorithm.
Further, we have observed the simulation results of the
booth multiplier and booth encoder for radix-2 and radix-4
algorithms. The FPGA realization of the proposed Booth
multiplier has been performed using relevant synthesizer.
The design flow was discussed with the aid of necessary
ASM charts and state diagrams.

REFERENCES
[1] J. J. F. Cavanagh, Digital Computer Arithmetic. New York: McGraw-

Hill, 1984.
[2] Information Technology-Coding of Moving Picture and Associated

Autio, MPEG-2 Draft International Standard, ISO/IEC 13818-1, 2,
3,1994.

[3] JPEG 2000 Part I Fina1119l Draft, ISO/IEC JTC1/SC29 WG1.
[4] O. L. MacSorley, “High speed arithmetic in binary computers,”

Proc.IRE, vol. 49, pp. 67–91, Jan. 1961.
[5]A.D.Booth,“A signed binary multiplication technique,” Quart. J.Math.,

vol. IV, pp. 236–240, 1952.
[6] G. Goto, T. Sato, M. Nakajima, and T. Sukemura, “A 54×54 regular

structured tree multiplier,” IEEE J. Solid- State Circuits, vol. 27,
no. 9,pp. 1229–1236, Sep. 1992.

[7] J. Fadavi-Ardekani, “M×N Booth encoded multipliergenerator using
optimizedWallace trees,” IEEE Trans.Very Large Scale Integr.
(VLSI) Syst., vol. 1, no. 2, pp.120–125, Jun. 1993.

[8] N. Ohkubo, M. Suzuki, T. Shinbo, T. Yamanaka, A.Shimizu, K.
Sasaki, and Y. Nakagome, “A 4.4 ns CMOS 54×54 multiplier using

K. Babulu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2102-2107

2106

pass-transistor multiplexer,” IEEE J. Solid-State Circuits, vol. 30,
no.3, pp. 251–257, Mar. 1995.

[9] Kim, K., P. Beerel, "A synchronous matrix-vector multiplier for
discrete cosine transform", in international symposium on low power
electronics and design, pp. 256-261, July 2000.

[10] Tang, T.Y., C.S. Choy, P.L. Siu and C.F. Chan, "Design of self-timed
asynchronous Booth's multiplier", in Proc. Asia South Pacific Design
Automation Conf., pp. 15-16, Jan 2000.

[11] Fahmi, M.N., F. Elguibaly, E. Abdel-raheem, and A Tawfik, "Area-
time efficient fixed-point multiplier-accumulators for inner-product
computation", in Proc. IEEE Int. Conf.Microelectronics, Dhahran,
Saudi Arabia, pp. 189-192, Dec, 1999.

[12] Kim, S., C.H. Ziesler, and M.C. thymiou, "Design, verification, and
test of a true single-phase 8-bit adiabatic multiplier", in Proc. 19th
Conf. Advances Research VLSI, Salt Lake City, UT, pp. 42-58, Mar.
2001.

K. Babulu et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2102-2107

2107

